General Adaptive Neighborhood Image Processing for Biomedical Applications
نویسندگان
چکیده
In biomedical imaging, the image processing techniques using spatially invariant transformations, with fixed operational windows, give efficient and compact computing structures, with the conventional separation between data and operations. Nevertheless, these operators have several strong drawbacks, such as removing significant details, changing some meaningful parts of large objects, and creating artificial patterns. This kind of approaches is generally not sufficiently relevant for helping the biomedical professionals to perform accurate diagnosis and therapy by using image processing techniques. Alternative approaches addressing context-dependent processing have been proposed with the introduction of spatially-adaptive operators (Bouannaya & Schonfeld, 2008; Ciuc et al., 2000; Gordon & Rangayyan, 1984; Maragos & Vachier, 2009; Roerdink, 2009; Salembier, 1992), where the adaptive concept results from the spatial adjustment of the sliding operational window. A spatially-adaptive image processing approach implies that operators will no longer be spatially invariant, but must vary over the whole image with adaptive windows, taking locally into account the image context by involving the geometrical, morphological or radiometric aspects. Nevertheless, most of the adaptive approaches require a priori or extrinsic informations on the image for efficient processing and analysis. An original approach, called General Adaptive Neighborhood Image Processing (GANIP), has been introduced and applied in the past few years by Debayle & Pinoli (2006a;b); Pinoli & Debayle (2007). This approach allows the building of multiscale and spatially adaptive image processing transforms using context-dependent intrinsic operational windows. With the help of a specified analyzing criterion (such as luminance, contrast. . . ) and of the General Linear Image Processing (GLIP) (Oppenheim, 1967; Pinoli, 1997a), such transforms perform a more significant spatial and radiometric analysis. Indeed, they take intrinsically into account the local radiometric, morphological or geometrical characteristics of an image, and are consistent with the physical (transmitted or reflected light or electromagnetic radiation) and/or physiological (human visual perception) settings underlying the image formation processes. The proposed GAN-based transforms are very useful and outperforms several classical or modern techniques (Gonzalez & Woods, 2008) such as linear spatial transforms, frequency noise filtering, anisotropic diffusion, thresholding, region-based transforms used for image filtering and segmentation (Debayle & Pinoli, 2006b; 2009a; Pinoli & Debayle, 2007). This book chapter aims to first expose the fundamentals of the GANIP approach (Section 2) by introducing the GLIP frameworks, the General Adaptive Neighborhood (GAN) sets and two 21
منابع مشابه
Logarithmic Adaptive Neighborhood Image Processing (LANIP): Introduction, Connections to Human Brightness Perception, and Application Issues
A new framework for image representation, processing, and analysis is introduced and exposed through practical applications. The proposed approach is called logarithmic adaptive neighborhood image processing (LANIP) since it is based on the logarithmic image processing (LIP) and on the general adaptive neighborhood image processing (GANIP) approaches, that allow several intensity and spatial pr...
متن کاملGeneral Adaptive Neighborhood Image Processing. Part II: Practical Applications Issues
The so-called General Adaptive Neighborhood Image Processing (GANIP) approach is presented in a two parts paper dealing respectively with its theoretical and practical aspects. The General Adaptive Neighborhood (GAN) paradigm, theoretically introduced in Part I [20], allows the building of new image processing transformations using context-dependent analysis. With the help of a specified analyz...
متن کاملGeneral Adaptive Neighborhood Image Processing Part II: Practical Application Examples
The so-called General Adaptive Neighborhood Image Processing (GANIP) approach is presented in a two parts paper dealing respectively with its theoretical and practical aspects. The General Adaptive Neighborhood (GAN) paradigm, theoretically introduced in Part I [20], allows the building of new image processing transformations using context-dependent analysis. With the help of a specified analyz...
متن کاملImage Restoration with Two-Dimensional Adaptive Filter Algorithms
Two-dimensional (TD) adaptive filtering is a technique that can be applied to many image, and signal processing applications. This paper extends the one-dimensional adaptive filter algorithms to TD structures and the novel TD adaptive filters are established. Based on this extension, the TD variable step-size normalized least mean squares (TD-VSS-NLMS), the TD-VSS affine projection algorithms (...
متن کاملGeneral Adaptive Neighborhood Image Restoration, Enhancement and Segmentation
This paper aims to outline the General Adaptive Neighborhood Image Processing (GANIP) approach [1–3], which has been recently introduced. An intensity image is represented with a set of local neighborhoods defined for each point of the image to be studied. These so-called General Adaptive Neighborhoods (GANs) are simultaneously adaptive with the spatial structures, the analyzing scales and the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012